A FLAVONOL GLYCOSIDE FROM EPIMEDIUM DIPHYLLUM

MIZUO MIZUNO,* MUNEKAZU IINUMA, TOSHIYUKI TANAKA, NORIO SAKAKIBARA, MASATOSHI NISHI,†AKIRA INADA† and TSUTOMU NAKANISHI†

Department of Pharmacognosy, Gifu Pharmaceutical University, 6-1 Mitahora-higashi 5 chome, Gifu 502, Japan; †Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-01, Japan

(Received 3 January 1989)

Key Word Index-Epimedium diphyllum; Berberidaceae; flavonol glycoside; diphylloside C.

Abstract—A novel flavonol glycoside named diphylloside C was isolated from the underground parts of *Epimedium diphyllum* and its structure was determined on the basis of spectral analyses (negative ion FAB-MS, $^1H^{-1}H$ COSY, NOESY, INEPT and $^1H^{-13}C$ COSY, etc) as des-O-methylanhydroicaritin 3-O- β -D-glucosyl- $(1 \rightarrow 2)$ - α -L-rhamnoside 7-O- β -D-glucosyl- $(1 \rightarrow 2)$ - β -D-glucoside.

INTRODUCTION

In our previous papers the isolation and structural elucidation of four new flavonol glycosides were reported from Epimedium sagittatum: icaritin 3-0- α -rhamnoside [1] and sagittatosides A-C [2] and two: diphyllosides A and B from E. diphyllum [3]. In the course of our search for bioactive principles in Epimedium species as well as a chemotaxonomic investigation of the genus Epimedium, further constituents of the underground parts of E. diphyllum (Morr. et Decne) Lodd. (Berberidaceae) were investigated. The present paper deals with the structure of a novel flavonol glycoside with different disaccharides at C-3 and C-7.

RESULTS AND DISCUSSION

After repeated silica gel chromatography of the butanol-soluble portion of a 70% methanolic extract, and final purification by medium pressure liquid chromatography, diphylloside C (1), mp 184–185°, $[\alpha]_D - 76.3^\circ$ (MeOH; c 0.25), was obtained as a pale yellow powder. The UV spectrum showed absorption bands at 270, 320 and 353 nm. Bathochromic-shifts on addition of some reagents indicated the presence of free hydroxyl groups at C-5 and C-4' of the flavonol skeleton. In the ¹H NMR spectrum (all protons were assigned by ¹H-¹H COSY, NOESY and ¹H-¹³C COSY) one-proton multiplets at δ 3.61 and 3.47, a one-proton multiplet at 5.14 in addition to two three-proton singlets at 1.62 and 1.69 showed the presence of a γ, γ -dimethylallyl group. This was also supported by signals at 21.25 (triplet) assigned to C-11, 122.56 (doublet) to C-12, 130.59 (singlet) to C-13, and 25.41 and 17.81 (both doublets) to C-14 and C-15 in the ¹³C NMR spectrum, in which all carbons were assigned by INEPT and ¹H-¹³C COSY. The B ring moiety was oxygenated only at C-4' on account of the signals of A₂B₂ at δ 7.81 and 6.95. On the basis of significant fragment

Diphylloside C

РНҮГО 28:9-т 2527

ion at m/z 353 in the FAB-MS, the aglycone moiety of 1 was identified as des-O-methylanhydroicaritin (=8-y,y-dimethylallyl-3,5,7,4'-tetrahydroxyflavone). Negative FAB-MS gave fragment ions which indicated that

^{*}Author to whom correspondence should be addressed.

2528 Short Reports

1 possessed three hexoses and a methyl pentose.

Acetylation of 1 gave the corresponding pentadecaacetate (2), C₇₄H₈₈O₄₀, as a colourless powder. In the negative FAB MS of 2 a [M-H] ion was observed at m/z 1615. Further proof of the complete structure of 1 was obtained from the 1H NMR of 2 and with the aid of ¹H-¹H COSY, NOESY and ¹H-¹³C COSY all the protons of 2 have been reasonably assigned, the data for which are shown in Table 1. A consideration of the chemical shifts and the coupling constants of four anomeric protons [δ 4.60 (J = 8.0 Hz), 4.77 (J = 8.0 Hz), 5.08 (J= 7.5 Hz) and 5.61 (J = 1.8 Hz), each doublet] and all the other sugar proton signals suggested the presence of two terminal β -D-glucopyranoses (Cl conformation) (hereafter shown as glc-b and glc-c) and two inner sugars, i.e. α-L-rhamnopyranose (IC conformation) and β -D-glucopyranose (Cl conformation) (shown as glc-a). Furthermore, it was also inferred that each of the inner sugars is linked at the 2B-OH groups with a terminal glucosyl moiety. The final structure for 1 was established by NOESY experiments of 1 and 2 as follows: (1) cross peaks were observed between the anomeric proton of rhamnose and the protons at C-2' and C-6' of the aglycone, and also between the 2β -proton of rhamnose and the anomeric proton of a terminal glucose (glc-c), indicating that a β -D-glucosyl- $(1\rightarrow 2)$ - α -L-rhamnosyl residue is connected with a hydroxyl group at C-3 of the aglycone; (ii) NOE effects were observed between the anomeric proton of inner glucose (glc-a) and the proton at C-6 and also between the 2β proton of inner glucose and the anomeric proton of the other terminal glucose (glc-b). This finding showed that a β -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -D-glucopyronosyl residue is linked with a hydroxyl group at C-7. These two disaccharide structures at C-3 and C-7 were further corroborated by the following alternative investigation; (i) in the ¹H NMR experiments, both the 2β -protons of rhamnose and the inner glucose (glc-a) in 2 resonated at almost the same field as those in the original glycoside; (ii) in the ¹³C NMR spectrum of 1, the carbons at C-2 of rhamnose resonated at δ 81.21, which is a shift upfield by ca 10 ppm more than that of a usual rhamnose. Analogously, the C-2 signal of an inner glucose (glc-a) appeared at δ 80.94, a shift of 6–7 ppm upfield in comparison with the terminal glucoses glc-b and glc-c; (iii) the fissions in the negative ion FAB-MS of 1 were reasonably consistent with this bisdemoside structure. From the above spectral evidence 1 is concluded to be des-O-methylanhydroicaritin 3-O- β -D-glucosyl- $(1\rightarrow 2)$ - α -L-rhamnoside 7-O-

β-D-glucopyranosyl- $(1\rightarrow 2)$ -β-D-glucoside. Compound 1 can also be regarded as diphylloside A [des-O-methylanhydroicartin 3-glucosyl- $(1\rightarrow 2)$ -rhamnoside 7-glucoside] with an extra glucose at C-7. It should be pointed out that diphylloside A was also reported by Fukai and Nomura [4] as a new compound from E. grandiflorum at the same time as our previous publication [3] and they named it ikarisoside C.

EXPERIMENTAL

Plant material and procedures of extraction and isolation were described in ref. [3].

Compound 1 (diphylloside C). A yellow powder (EtOH-H₂O) (35 mg) was obtained, mp 184–185°, $C_{44}H_{58}O_{25}$, $[\alpha]_D - 76.3^\circ$ (MeOH; c 0.25). IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3380, 2920, 1650, 1600. UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm: 221sh, 270, 320, 353, +NaOMe: 250, 272, 386, + AlCl₃: 241, 275sh, 305, 360, + AlCl₃-HCl: 241, 275sh, 305, 360, + NaOAc: 271, 322, 360, + NaOAc-H₃BO₃: 271, 322, 350sh. EIMS (m/z) (rel. int.): 354 (22), 339 (21), 299 (16), 165 (4), 121 (13). ¹H NMR (400 MHz, DMSO- d_6) δ : [aglycone moiety] 7.81 (d, J= 8.5 Hz, H-2', 6'), 6.95 (d, J = 8.5 Hz, H-3', 5'), 6.62 (s, H-6), 3.6]and 3.47 (m, H₂-11), 5.14 (m, H-12), 1.62 and 1.69 (each s, Me), [sugar moieties] (glc-a) 5.18 (d, J = 7.8 Hz, H-1), 3.67 (dd, J= 7.8 Hz, H-2); (glc-b) 4.59 (d, J = 7.8 Hz, H-1), 3.03 (dd, J = 7.8, 7.8 Hz, H-2); (rha) 5.59 (s, H-1), 4.13 (d, J = 3.3 Hz, H-2), 0.88 (d, J= 5.7 Hz, H-6); (glc-c) 4.27 (d, J = 7.8 Hz, H-1), 3.00 (dd, J = 7.8, 7.8 Hz, H-2). ^{13}C NMR (100.5 MHz, DMSO- d_6) δ : [aglycone moiety] 152.87 (s, C-2), 134.49 (s, C-3), 178.11 (s, C-4), 159.88 (s, C-5), 97.65 (d, C-6), 160.23 (s, C-7), 108.23 (s, C-8), 157.33 (s, C-9) 105.37 (s, C-10), 21.25 (t, C-11), 122.56 (d, C-12), 130.59 (s, C-13), 25.41 and 17.81 (each d, C-14 and C-15), 120.29 (s, C-1'), 130.52 (d, C-2', 6'), 115.36 (d, C-3', 5'), 158.91 (s, C-4'), [sugar moieties] (glca) 98.19 (d, C-1), 80.94 (d, C-2); (glc-b) 103.93 (d, C-1), 74.61 (d, C-2); (rha) 100.85 (d, C-1), 81.21 (d, C-2), 70.34 (d, C-3), 71.55 (d, C-4), 70.05 (d, C-5), 17.26 (q, C-6); (glc-c) 106.06 (d, C-1), 73.73 (d, C-2); other glucosyl carbons 76.53, 76.13, 76.13 ($3 \times C$ -3), 69.43, 69.19, 69.08 (3 \times C-4), 76.93, 76.89, 76.89 (3 \times C-5), 60.47, 60.34, 60.25 $(3 \times C-6)$.

Compound 2 (pentadeca-acetate of (1): A colourless powder, $C_{74}H_{88}O_{40}$, $[\alpha]_D - 71.1^\circ$ (CHCl₃; c0.33). IR ν_{\max}^{KBr} cm⁻¹: 1750 (Ac), 1630 (C=O), 1605 (C=C). ¹H NMR (400 MHz, CDCl₃) δ : [aglycone moiety] 7.86 (d, J=8.7 Hz, H-2',6'), 7.26 (d, J=8.7 Hz, H-3',5'), 6.80 (s, H-6), 5.17 (dd, J=5.0, 7.5 Hz, H-12), 3.68 (d, J=5.0, 7.5 Hz, H-11), 3.59 (d, J=7.5, 14.0 Hz, H-11), 1.67 and 1.73 (each s, Me) [acetyl methyl groups] 2.38, 2.33, 2.18, 2.14, 2.10, 2.07 (×2), 2.06, 2.05, 2.03, 2.02, 2.01 (×2), 1.99, 1.97 [sugar moiety] shown in Table 1.

Table 1. ¹H NMR spectral data of the sugar moiety of the pentadeca-acetate of 1 (2)

	glc-a	glc-b	glc-c	rha
1 2 3 4 5	5.08 (d , J = 7.5 Hz) 4.12 (dd , J = 7.5, 9.3 Hz) 5.29 (dd , J = 9.3, 9.3 Hz) 5.06 (dd , J = 9.3, 9.3 Hz) 3.92 (ddd , J = 2.5, 6.0, 9.3 Hz) 4.26 (dd , J = 6.0, 12.0 Hz) 4.17 (dd , J = 2.5, 12.0 Hz)	4.77 $(d, J = 8.0 \text{ Hz})$ 4.93 $(dd, J = 8.0, 9.3 \text{ Hz})$ 5.15 $(dd, J = 9.3, 9.3 \text{ Hz})$ 4.94 $(dd, J = 9.3, 9.3 \text{ Hz})$ 3.68 $(ddd, J = 2.5, 3.5, 9.3 \text{ Hz})$ 4.18 $(dd, J = 3.5, 12.0 \text{ Hz})$ 4.08 $(dd, J = 2.5, 12.0 \text{ Hz})$	4.60 (d, J = 8.0 Hz) 5.03 (dd, J = 8.0, 9.3 Hz) 5.22 (dd, J = 9.3, 9.3 Hz) 5.10 (dd, J = 9.3, 9.3 Hz) 3.71 (ddd, J = 2.5, 3.8, 9.3 Hz) 4.36 (dd, J = 3.8, 12.0 Hz) 4.06 (dd, J = 2.5, 12.0 Hz)	5.61 (d, J = 1.8 Hz) 4.43 (dd J = 1.8, 3.5 Hz) 5.20 (dd, J = 3.5, 10.0 Hz) 4.85 (dd, J = 10.0, 10.0 Hz) 3.24 (dq, J = 10.0, 6.0 Hz) 0.84 (d, J = 6.0 Hz)

Short Reports 2529

REFERENCES

- Mizuno, M., Hanioka, S., Suzuki, N., Iinuma, M., Tanaka, T., Liu, X. and Min, Z. (1987) Phytochemistry 26, 861.
- 2. Mizuno, M., Sakakibara, N., Hanioka, S., Iinuma, M., Tanaka, T., Liu, X. and Shi, B. (1988) Phytochemistry 27, 3641.
- Mizuno, M., Iinuma, M., Tanaka, T., Sakakibara, N., Fujikawa, T., Hanioka, S., Ishida, Y., Liu, X. and Murata, H. (1988)
 Phytochemistry 27, 3645.
- 4. Fukai, T. and Nomura, T. (1988) Phytochemistry 27, 259.

Phytochemistry, Vol. 28, No. 9, pp. 2529-2530, 1989. Printed in Great Britain

0031-9422/89 \$3.00+0.00 © 1989 Maxwell Pergamon Macmillan plc.

TWO ANTHOCHLOR PIGMENTS FROM HEARTWOOD OF PTEROCARPUS MARSUPIUM

POONAM MOHAN and T. JOSHI

Department of Chemistry, University of Allahabad, 211 002, India

(Received 26 January 1989)

Key Word Index—*Pterocarpus marsupium*; Leguminosae; 6,4'-dihydroxy-7-methylaurone 6-*O*-rhamnopyranoside; aureusidin 6-*O*-rhamnopyranoside.

Abstract—Two new aurone glycosides, 6,4'-dihydroxy-7-methylaurone 6-O-rhamnopyranoside and 4,6,3',4'-tetrahydroxy aurone 6-O-rhamnopyranoside have been isolated and identified from the heartwood of *Pterocarpus marsupium*.

From the aqueous extract of the heartwood of P. marsupium, two novel aurone glycosides have been isolated and identified. Compound 1, the yellow pigment analysed for $C_{22}H_{22}O_8$, mp 170° . It was found to be glycosidic in nature [1]. On acid hydrolysis $(7\%\ H_2SO_4)$ it gave an aglycone and rhamnose, identified by co-chromatography with an authentic sample and by ¹H NMR spectral analysis of the glycoside (a doublet at $\delta 1.20$ corresponding to the three protons of rhamnosyl—Me group, broad signal at $\delta 3.5$ –3.82 for four sugar protons and a singlet at $\delta 4.2$ due to C-1" proton of rhamnose).

The aglycone, C₁₆H₁₂O₄ was characterized as an aurone on the basis of colour reactions [2] and UV spectral data [3]. ¹H NMR studies showed six aromatic protons suggesting a trisubstituted aurone. A multiplet at δ 7.69-7.9 (2H) was due to C-2' and -6' and multiplet at δ 6.8–7.0 (2H) for C-3' and -5' protons. There was a singlet at $\delta 6.67$ for benzylic proton (=CH-) [4]. A singlet at δ 1.44 was assignable to 3H of the -Me group. On acetylation it gave a diacetate, mp 96°, showing the presence of two hydroxyl groups. The positions of hydroxyls were shown to be at C-4' and C-6 of aglycone by UV spectral shifts (bathochromic shift of 45 and 46 nm of band 1 with sodium methoxide and sodium acetate respectively). The presence of a free -OH at C-4' position in the glycoside was confirmed by a large bathochromic shift in $\lambda_{max}^{\text{MeOH}}$ (ca 70 nm) upon addition of sodium methoxide and (68 nm) with sodium acetate. C-7 position of -Me group was confirmed by NMR.

Mass spectral data showed a molecular ion peak at 414. Two fragments at m/z 150 and m/z 118 showed that

one hydroxyl group was present in the B ring and -Me was present in the A ring. Thus the structure of 1 is confirmed. This compound has not been reported earlier from any other plant source.

Compound 2, a yellow crystalline compound analysed for C₂₁H₂₀O₁₀, mp 264°, was found to be glycosidic in nature [1]. On hydrolysis it gave rhamnose (co-PC) and an aglycone which was shown to be an aurone by its colour reactions [2] and UV spectrum [3]. ¹H NMR studies of the aglycone showed five aromatic protons suggesting a tetrasubstituted nucleous. On acetylation it gave a tetraacetate, mp 182°, showing the presence of four hydroxyl groups. The aglycone was found to be the same as a [synthetic] sample of aureusidin (4,6,3',4'-tetrahydroxyaurone) on the basis of chromatography and spectroscopy [5, 6]. The UV spectrum of the glycoside showed that the sugar was not at C-4 (a large bathochromic shift of 60 nm by aluminium chloride) or C-4' (bathochromic shift of 85 nm in alkali). Methylation of the glycoside, followed by acid hydrolysis gave a product which was chromatographically and spectrally identical with a [synthetic] sample of 6-hydroxy-4,3',4'-trimethoxyaurone. Thus the structure of 2 is confirmed; this is a new glycoside but the aglycone has been reported earlier [5, 6].

The structures of aglycones were further confirmed by synthesis. Aglycone of 1 was synthesized by condensing 6-hydroxy-7-methylcoumaranone and p-hydroxybenzal-dehyde. Aureusidin, the aglycone of 2 was prepared from 4,6-dihydroxycoumaranone and 3,4-dihydroxybenzaldehyde.